Cours - NSI La récursivité

1 Introduction et définitions

1.1 Définition

```
Définition 1 (Fonction récursive)
```

Une **fonction récursive** est une fonction qui fait appel à elle-même.

1.2 Un premier exemple: la fonction puissance

On peut par exemple implémenter de façon récursive la fonction puissance. On rappelle que pour a réel non nul et n entier naturel non nul on a :

$$\begin{cases} a^0 = 1 \\ a^n = a \times a^{n-1} \end{cases}$$

Notons alors $deux_puissance(n)$ la fonction d'argument l'entier n et qui renvoie 2^n . On peut programmer cette fonction de façon récursive :

```
def deux_puissance(n):
    if n==0:
        return 1
    else:
        return 2*deux_puissance(n-1)
```

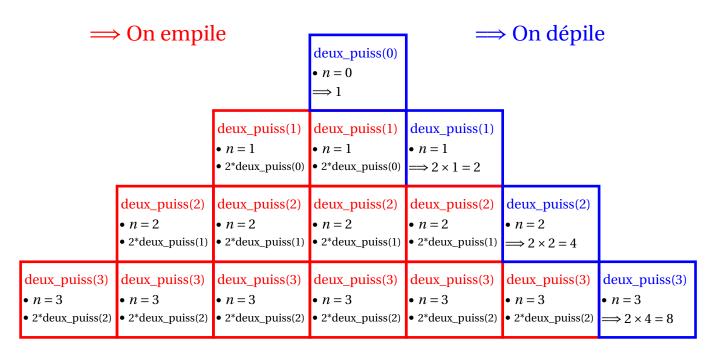
```
# Dans la console PYTHON
>>> deux_puissance(3)
8
```

1.3 Pile d'exécution

```
def deux_puiss(n):
    if n==0: # Cas de base
        return 1
    else: # Appel récursif (appel interne)
        return 2*deux_puiss(n-1)
```

Voyons comment va fonctionner cette fonction $deux_puiss(n)$.

- 1. Lors de l'appel une **structure de Pile** est utilisée.
- 2. L'idée est que comme pour une pile d'assiettes, on peut :
 - Soit empiler un objet en haut de la pile;
 - · Soit retirer un objet du haut.
- 3. La pile d'exécution est limitée par défaut à 1 000 sous python (voir 997 sous repl?), au delà on a une erreur "*RecursionError* : *maximum recursion depth exceeded in comparison*".



On obtient bien le résultat attendu et observé:

```
# Dans la console PYTHON
>>> deux_puiss(3)
8
```

1.4 Écriture d'une fonction récursive

Pour écrire une fonction récursive :

- 1. On détermine un **cas de base**, c'est à dire une valeur de l'argument pour laquelle le problème se résout immédiatement (renvoie une valeur). On parle aussi de **condition d'arrêt**.
- 2. Traiter attentivement le **cas récursif** du passage des valeurs renvoyées par l'appel précédent à l'appel suivant.

Exemple

Avec l'exemple classique de la fonction puissance de deux qui retourne 2^n . Cette fonction peut-être définie par une fonction récursive car :

1. Un cas de base est:

$$2^0 = 1$$

2. Égalité de récurrence :

$$2^n = 2 \times 2^{n-1}, \ pourn > 0$$

```
def deux_puissance(n):
   if n==0: # Cas de base
      return 1
   else: # Appel récursif (appel interne)
      return 2*deux_puissance(n-1)
```

2 Preuves de terminaison et de correction

Remarque: Cette partie peut être omise dans un premier temps.

Pour prouver qu'un algorithme récursif fonctionne on doit prouver qu'il vérifie deux propriétés :

- 1. **Terminaison**: l'algorithme doit se terminer.
- 2. **Correction (partielle)** : si l'algorithme se termine, il doit renvoyer ce que l'on souhaite. Pour prouver cette **correction partielle** il faut montrer que si les **appels internes** renvoient la bonne valeur, alors la fonction aussi, c'est le même principe qu'une démonstration par récurrence en mathématiques.

Nous pouvons démontrer que l'algorithme $deux_puissance(n)$ est valide. Pour cela nous allons prouver par récurrence que $deux_puissance(n)$ renvoie vraiment 2^n , pour simplifier nous écrirons cette assertion : $deux_puissance(n) = 2^n$.

```
def deux_puissance(n):
   if n==0: # Cas de base
      return 1
   else: # Appel récursif (appel interne)
      return 2*deux_puissance(n-1)
```

1. Correction.

— **Initialisation (cas de base)**: pour n = 0 on a bien

deux puissance(0) = 1 et
$$2^0 = 1$$

— **Conservation**: (on suppose que les appels internes renvoient bien ce qu'il faut). Si on suppose que pour n fixé les **appels internes récursifs sont valides** soit :

$$deux puissance(n-1) = 2^{n-1}$$

alors puisque notre relation de récurrence est :

$$deux_puissance(n) = 2 \times deux_puissance(n-1)$$

On obtient bien en utilisant notre hypothèse de récurrence (c.a.d en supposant nos appels internes valides) :

$$deux_puissance(n) = 2 \times 2^{n-1} = 2^n$$

2. Terminaison.

L'algorithme se termine car à chaque tour de boucle n diminue de 1 et on fini par arriver au return du cas terminal lorsque n = 0 si on a fourni initialement un argument positif pour n.

3 Exercices sur la récursivité

3.1 Fonction a^n

SExercice 1

- 1. Écrire une fonction récursive *puissance*(a, n) qui renvoie a^n .
- 2. Démontrer la terminaison de votre algorithme récursif.

3.2 Factorielle

On note n! (se lit « factoriel n ») le nombre $1 \times 2 \times 3 \times \cdots \times n$, pour tout entier naturel n > 0. Par convention on définit:

$$\begin{cases}
0! = 1 \\
n! = 1 \times 2 \times 3 \times \dots \times n , n \in \mathbb{N}^*
\end{cases}$$

Remarque historique

La notation factorielle est introduite par le mathématicien Christian KRAMP (1760-1826) en 1808 dans Éléments d'arithmétique universelle (1808).

Exercice 2

- 1. Calculer 1!, 2!, 3!, 4! et 5!.
- 2. Soit $n \in \mathbb{N}^*$, exprimer n! en fonction de (n-1)!.
- 3. Écrire une fonction **fact(n)** et **fact recur(n)** qui renvoient n!, avec $n \ge 0$:
 - (a) En utilisant une boucle;
 - (b) Avec une fonction récursive.
- 4. Démontrer la terminaison de votre algorithme récursif.

3.3 Une somme

Exercice 3

Soit (S_n) la suite définie pour n entier non nul par :

$$S_n = 1 + 2 + 3 + \cdots + n$$

- 1. Calculer S_1 , S_2 , S_3 , S_4 et S_5 .
- 2. Soit $n \in \mathbb{N}^*$, exprimer S_n en fonction de S_{n-1} .
- 3. Écrire des fonctions s(n) et $s_recur(n)$ qui renvoient S_n , avec $n \ge 0$:
 - (a) En utilisant une boucle;
 - (b) Avec une fonction récursive.
- 4. Démontrer la terminaison de votre algorithme récursif.

3.4 PGCD

1. Écrire en python une fonction récursive **pgcd(a,b)** renvoyant le plus grand diviseur commun de deux nombres *a* et *b*.

Pour cela on utilisera le résultat mathématique suivant :

 $\langle pgcd(a,b) = pgcd(b,r) \rangle$, où r reste de la division euclidienne de a par b.

3.5 Une fonction mystère

Attention il faut évidemment faire cet exercice sur feuille, vous pourrez ensuite vérifier sur votre éditeur Python vos résultats mais l'objectif est de s'entraîner à une évaluation écrite qui pourra proposer un exercice de ce type. On considère le programme suivant :

```
# Dans l'éditeur PYTHON

def f(a,b):
    """
    In: a et b sont des entiers strictement positifs
    Out: ????
    """
    if b==1:
        return a
    else:
        return a+f(a,b-1)
```


- 1. Quel résultat retourne f(7,9)?
- 2. En déduire la signification de la valeur renvoyée par cette fonction pour deux entiers naturels *a* et *b* quelconques.
- 3. Démontrer la terminaison de cet algorithme récursif.

3.6 La suite de Fibonacci

La suite de Fibonacci est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Elle commence généralement par les termes 0 et 1 .

Elle doit son nom à **Leonardo Fibonacci** (v. 1175 à Pise - v. 1250) un mathématicien italien qui avait pour nom d'usage ń Leonardo Pisano ż ou ń Léonard de Pise ż

Fibonacci dans un problème récréatif posé dans l'ouvrage *Liber abaci* (1202), décrit la croissance d'une population de lapins : « Un homme met un couple de lapins dans un lieu isolé de tous les côtés par un mur. Combien de couples obtient-on en un an si chaque couple engendre tous les mois un nouveau couple à compter du troisième mois de son existence? »

Leonardo Fibonacci (1175-1250)

On définit donc la suite (F_n) pour $n \ge 2$ par :

$$\begin{cases} F_0 = 0 \; ; \; F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} \end{cases}$$

- 1. Calculer les 5 premiers termes de la suite.
- 2. Écrire des fonctions F(n) et $F_{recur}(n)$ qui renvoient le terme de rang n, avec $n \ge 0$:
 - (a) En utilisant une boucle;
 - (b) Avec une fonction récursive.
- 3. On note $\phi(n) = \frac{F_{n+1}}{F_n}$. Écrire une fonction **phi(n)** qui renvoie le rapport $\frac{F_{n+1}}{F_n}$, avec $n \ge 1$. Conjecturer la limite de ce rapport.

3.7 Approximation de la racine carrée.

Le but de cet exercice est d'écrire une fonction qui calcule une valeur approchée de la racine carrée d'un nombre. Soit x un nombre réel positif, une valeur approchée de \sqrt{x} est donnée par le calcul des valeurs de la suite (U_n) définie pour n entier par :

$$U_{n} = \begin{cases} 1 & \text{si } n = 0 \\ \frac{U_{n-1} + \frac{x}{U_{n-1}}}{2} & \text{si } n > 0 \end{cases}$$

- 1. Écrire une fonction qui, étant donne un nombre x et un entier n, renvoie l'approximation au rang n de \sqrt{x} .
- 2. Démontrer la terminaison de votre algorithme récursif.

3.8 D'autres fonctions mystères

Que fait la fonction suivante?

```
# Dans l'éditeur PYTHON

def mystere(L,M=[]):
    """
    In: L est une liste
    Out: ????
    """
    if L==[]:
        return M
    a=L.pop(0)
    if a not in M:
        M.append(a)
    return mystere( L , M )
```


Que fait la fonction suivante?

```
# Dans 1'éditeur PYTHON
def mystere(L):
    """
    In: L est une liste
    Out: ????
    """
    if len(L) ==1:
        return L[0]

    if L[0] < L[1]:
        L.pop(1)
    else:
        L.pop(0)
    return mystere( L )</pre>
```


Cette fonction est elle récursive? Si oui quelle est sa condition d'arrêt sinon changez le code pour en faire une fonction récursive.

```
# Dans l'éditeur PYTHON

def multiplication(n1, n2):
    if n1 < 0:
        return -multiplication(-n1, n2)

if n2 < 0:
        return -multiplication(n1, -n2)

resultat = 0

for _ in range(n2):
        resultat += n1

return resultat</pre>
```

3.9 Permutations

La notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation d'objets distincts rangés dans un certain ordre correspond à un changement de l'ordre de succession de ces objets. Par exemple si A = [1,2,3], l'ensemble des permutations de A est

```
[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
```


Écrire une fonction qui prend une liste A de taille n et renvoie la liste des permutations de A.

← Fin du cours ←